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Abstract The stochastic location-allocation p-hub median
problems are related to long-term decisions made in risky
situations. Due to the importance of this type of problems
in real-world applications, the authors were motivated to
propose an approach to obtain more reliable policies in
stochastic environments considering the decision makers’
preferences. Therefore, a systematic approach to make
robust decisions for the single location-allocation p-hub
median problem based on mean-variance theory and two-
stage stochastic programming was developed. The ap-
proach involves three main phases, namely location
modeling, risk modeling, and decision making, each in-
cluding several steps. In the first phase, the pertinent
location-allocation model of the problem is developed in
the form of a two-stage stochastic model based on its
deterministic version. A risk measure, based on total cost
function and mean-variance theory, is derived in the sec-
ond phase. Furthermore, two heterogeneous terms of the
risk measure have been normalized and an innovative
procedure has been proposed to significantly improve the
calculation efficiency. In the third phase, the Pareto solu-
tion is obtained, the frontier curve is depicted to determine
the decision maker’s risk aversion coefficient, and a robust
policy is obtained through optimization based on decision
makers’ preferences. Finally, a case study of an automo-
bile part distribution system with stochastic demand is
described to further illustrate our risk management and
analysis approach.

Keywords p-Hub location-allocationmedian problem .

Two-stage stochastic programming . Risk analysis and
management . Robust decisionmaking . Risk aversion
coefficient

1 Introduction

In recent years, due to the increasing need to produce and
distribute goods and provide service just in time and more
economically, hub location problems (HLPs) have been the
focus of attention in facility planning literature. Hub location
problems are usually considered as network location problems
consisting of given pairs of nodes (origins/destinations) and the
connecting edges between them. In this type of problems, it is
assumed that goods or services are conveyed from the origin
node to the destination through the hubs in order to fulfill the
demand of each node. Some real-world examples for HLPs are
transportation networks with passengers, mailing parcels or
goods transported between the nodes, communication networks
with data and information transmitted between the nodes, and
emergency services that convey firefighting facilities or patients.

Due to different features and characteristics of real-world
applications involving hubs, several models have been devel-
oped under the category of hub location problems. Based on the
costs considered in the objective functions, two most frequent
models introduced so far are the p-hub median and capacitated
or uncapacitated hub location problems. In capacitated or
uncapacitated hub location problems, setup costs for hubs and
operation costs for flow of goods in the network are considered,
but in the p-hub median problem, only the operation costs are
being minimized. In capacitated hub location problems, there
are extra limitations on the capacity that can flow through arcs
and nodes. Based on the allocation of non-hub nodes (spokes)
to hubs, there are two major classifications of hub location
problems including single allocation and multiple allocation
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models. In single allocation models, every spoke is only con-
nected to one hub. On the other hand, in multiple allocation
models, each spoke can send and receive flow from more than
one hub. Other than these two major approaches, in some
models, flexible allocations between hubs and spoke are con-
sidered. The basic model that is studied in this paper is a single
allocation uncapacitated hub location problem.

One important aspect of real-world applications is the un-
certain environment that can affect important parameters of the
model such as demand, prices, and distances. In order to make
more realistic decisions in any problem, it is essential to
consider the uncertain behavior of the determining parameters.
In hub location problems, there have been few studies consid-
ering the uncertainty in modeling and solution procedure. The
gap between the literature and the wide range of real-world
applications of these models has motivated the authors to
present a model with the assumption of uncertain demand
data. In general, there are two possibilities towards considering
uncertainty in problems: (i) the probability distribution asso-
ciated with the uncertain data in the model is unknown, or (ii)
uncertain parameters in the model follow a known probability
distribution. Themodeling approach related to the latter case is
called stochastic programming. In this paper, a two-stage
stochastic programming approach is presented that captures
the uncertainty in demand of goods in the network.

Hub location problems are among the network design
problems that are usually part of a long-term strategic
decision-making problem. Designing and implementing hub
and spoke networks occur before the network starts to operate;
therefore, a reliable decision making is necessary to prevent
failures and unexpected costs. Besides considering a stochas-
tic programming approach, management of risks is another
approach that helps to have reliable and efficient decisions in
uncertain environments. Another contribution of this paper is
adding a risk management measure to the reformulated sto-
chastic hub location problem. The risk measure proposed is
mean-variance risk measure, which is one of the basic mea-
sures firstly introduced in finance literature to manage the risk
of portfolio selection problems by Markowitz [1].

To summarize, in this paper, an uncapacitated single allo-
cation p-hub median (location) problem has been studied in
uncertain conditions of demand flow. This problem is
reformulated as a two-stage stochastic programming model
to deal with uncertainties. Then, the mean-variance risk mea-
sure is added to the model to get more reliable solutions. Also,
two heterogeneous terms of the risk measure have been nor-
malized and an innovative procedure has been proposed to
significantly improve the calculation efficiency. An illustra-
tive case study in an automobile part distribution system has
been indicated, where the model has been successfully applied
to analyze and manage uncertainty conditions and to make
effective and reliable decisions. The main contribution in this
study is introducing a systematic approach, based on a basic

financial risk measure (mean-variance) integrated in a two-
stage stochastic framework on a hub location problem. This
work could be an excellent starting point to pursue this valu-
able and useful concept for more developed and improved
models and conditions.

The rest of the paper is organized as follows: In the next
section, the relevant literature about p-hub location is
reviewed. In Section 3, the characteristics of the considered
problem will be described. The framework of the innovative
systematic approach will be explained in Section 4. In Sec-
tion 5, an automobile part distribution system in Iran is con-
sidered as a case study, and finally, in Section 6, the conclu-
sions and further research suggestions are addressed.

2 Literature review

Research on standard hub location problems dates back to the
seminal papers of O’Kelly [2, 3]. Since then, much work has
been done in this area, all of which cannot be covered in this
review. Readers are referred to Campbell et al. [4] for a
comprehensive survey on models and solution methodologies
developed until year 2002. For a survey of literature up to
2007, readers are referred to the study of Alumur et al. [5], and
to review the literature from 2007 up to 2013, readers can refer
to the study of Farahani et al. [6]. In the area of classic and
general location problems, uncertainty has been studied vastly
in the last three decades (see for instance [7–9]). For a more
recent survey on stochastic location models, the reader can
refer to the study of Snyder [10].

Few studies in the area of hub location problems have
provided models and algorithms with addressing uncertain
parameters. In some papers, it is assumed that uncertain pa-
rameters follow a known distribution model. For example,
Mariano and Serra [11] suggested a queuing model for hub
location problems in airline industry where the arrivals of
planes follow a Poisson process (see also [12] as an extension
of this study). In another study, Sim et al. [13] developed a
stochastic model for p-hub median problem in package deliv-
ery networks and assumed that the travel time between the
nodes follow normal distribution.

Most of the times, we cannot identify the probability dis-
tribution of uncertain parameters. One important approach in
dealing with this situation is defining possible scenarios for
the occurrences of uncertain parameter and deriving their
corresponding probabilities based on historical data and ex-
perts’ opinion. Then, stochastic programing methods can be
applied to model these scenarios and their corresponding
probabilities. Yang [14] studied an airfreight hub location
problem with stochastic seasonal demand and developed a
two-stage stochastic programming model for this problem.
His aim was to decide on the location of the hubs at the first
stage and to determine the routes at the second stage.
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Contreras et al. [15] provided an uncapacitated multiple allo-
cation hub location problem with stochastic demand and
transportation costs which was formulated as a two-stage
integer programming (see also [16, 17]). Our study is in line
with this stream of research on p-hub median problems where
there is no known probability distribution for uncertain pa-
rameter (demand between nodes), and we provide a two-stage
stochastic model. In this model, the location of hubs is deter-
mined in the first stage and the allocation of demands between
hubs is determined in the second stage.

It is shown that in many real-world problems using only a
stochastic modeling approachwithout considering possible risks
of the decisionsmadewill not provide reliable results [18]. In the
field of facility location, most of the previous studies were risk
neutral and applying riskmanagement tools has not been studied
until recent years. Main difference among risk-related studies is
themeasure used to account for risk in the problem. Thework of
Wagner et al. [19] is one of the seminal papers in risk-related
studies in location problems, in whichmean-variance and value-
at-risk (VaR) risk measures have been used tomanage the risk in
a simple uncapacitated facility location problem. Other recent
papers are Wang and Watada [20], where VaR-based location
models are studied under fuzzy random uncertainty, and Azad
and Davoudpour [21], where a stochastic location-routing mod-
el involving VaR measure has been studied.

To the best of our knowledge, there are two papers in the
literature addressing risk in decisionmaking for stochastic hub
location problems. Zhai et al. [22] developed a new two-stage
stochastic model for HLPwith stochastic demand. To consider
risk in their problem, they formulated the objective function in
a way that the total costs were bounded by a predetermined
upper bound. Mohammadi et al. [23] developed a stochastic
multi-objective hub covering location problem. The uncertain
parameter is the transportation time between nodes of the
network, and a factor accounting for the risk of deviation of
the expected transportation time is included in their model. In
our study, we have modeled the problem by including the
well-known mean-variance risk measure and provided a
framework to reliable and robust decision making.

3 Problem statement

A general communicative network consisting of demand
points and their relationships is considered in the form of a
connected graph G=(N,A), in which p nodes should be se-
lected as hubs and the rest are defined as non-hub nodes. Also,
it is assumed that the connection among p-hub nodes creates a
complete graph and each non-hub node should be connected
to only one hub node (single allocation). Therefore, if |N|=n,

then Aj j ¼ p p−1ð Þ
2 þ n−pð Þ , where |N| and |A| are the number of

node and edges in graph G, respectively. Furthermore,

transshipment for a specific stochastic demand between each
pair of non-hub nodes (which have not been connected to the
same hub) as origin and destination should be done in three
different stages: collection (from origin non-hub to hub),
transfer (from hub to hub), and distribution (from hub to
destination non-hub), as depicted in Fig. 1.

In this problem, the main purpose is to provide a systematic
approach to make robust decisions in order to determine
which nodes must be considered as hubs (location) and how
to assign non-hub nodes to them (allocation) such that the
summation of transportation and setup cost is minimized.

4 Methodology

In this section, a systematic procedure consisting of three main
phases, namely location modeling, risk modeling, and deci-
sion making, is presented in order to obtain a robust policy for
p-hub location problem in a stochastic situation (Fig. 2). Each
phase of this procedure will be discussed in the following
subsections.

4.1 Location modeling

4.1.1 Notations

In order to propose the mathematical programming, the re-
quired notations are defined as follows:

Sets

N A set of graph node as communicative network

Φ The set of all possible scenarios for stochastic demand

Parameters

cij Transportation unit cost between nodes i and j per demand unit

hij Deterministic demand or flow that must be transferred from
origin i to destination j

p The number of hubs that should be opened

fk The setup cost of opening a hub facility at potential node k

α Discount factor for transportation cost between hubs

ϕ A realized scenario, ϕ∈Φ
p(ϕ) The probability of occurring scenario ϕ, ϕ∈Φ
λ Decision maker’s risk aversion coefficient

Main decision variables

xj A binary variable that takes on the value 1 if node j is a hub, and it
is 0, otherwise

yik A binary variable that takes on the value 1 if node i is located to
hub at node k, otherwise 0

Auxiliary terms

TC Total cost consisting of setup and transportation cost

F(x) Total setup cost

Q(x,ξ) Total stochastic transportation cost

RM Risk measure, defined based on mean-variance theory
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4.1.2 The deterministic model

As the first step of the proposed systematic procedure, a
deterministic hub location model (DHLM), with regard to
defined characteristics of the problem, should be derived.
Therefore, using the previous sets of notations, the determin-
istic integer programming formulation of the single allocation

p-hub median problem p‐hub=D=SA= ∑
flow

þ ∑
hub

:

� �
is pre-

sented based on O’Kelly [3], with little manipulation (adding
the setup cost for opening hubs) as follows:

DHLM:

Min
X
i∈N

X
j∈N

hi j
X
k∈N

cikyik þ α
X
k∈N

X
m∈N

ckmyiky jm þ
X
m∈N

c jmy jm

 !
þ
X
k∈N

f kxk

ð1Þ

s:t:
X
k∈N

yik ¼ 1 ∀i∈N ð2Þ

X
k∈N

xk ¼ p ð3Þ

yik ≤xk ∀i; k∈N ð4Þ

yik∈ 0; 1f g ∀i; k∈N ð5Þ

xk∈ 0; 1f g ∀k∈N : ð6Þ

The objective function consists of the transportation cost in
forms of collection, transfer, and distribution as first, second,
and third term, respectively, and the total setup cost for open-
ing p-hub facilities. The unit transportation cost in transfer
must be smaller than the collection and distribution cost, so
0 ≤ α≤1 and it is multiplied by the total cost of transshipment.
Constraint (2) guaranties the single allocation of non-hub
nodes to hubs. The exact number of required hubs is ensured
by constraint (3). Constraint (4) states that the demand node i
cannot be connected to a hub at j unless a hub at node j is
opened, and constraints (5) and (6) are standard binary
constraints.

4.1.3 Two-stage stochastic model

Considering the stochastic nature of hub location problems,
these kinds of problems could well be defined in a stochastic
environment and modeled as a two-stage stochastic program-
ming problem. Usually, the most important uncertainty in this
type of problems is the uncertainty in demand between the
customers (i.e., the amount of flow between the nodes). Thus,
adopting an appropriate approach to face this kind of uncer-
tainty would have a significant impact in reducing the costs
and improving the overall performance of the decision-
making system. Therefore, in this stochastic model, it is
assumed that the demand in future periods is uncertain and
different realizations (scenarios) are possible for it. Moreover,
in the real world, in addition to the cost of transportation
between the hubs, there is a setup cost to open the hub
facilities in potential nodes. Considering the fact that the
decision about the location of the hub facilities is usually
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Hub to hub connection

Legend

A transshipment path
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Fig. 1 Transshipment between
pairs of non-hub nodes via hubs
in single allocation

1) write the deterministic hub location model (DHLM),

2) develop a two-stage stochastic hub location model (TSSHLM) for DHLM,

3) derive risk aversion model (RAM1) based on TSHLM and mean-variance theory,

5) Solve RAM1 for different risk-aversion coefficients (λ) and obtain pareto-decisions (PD),

6) Depict the efficient frontier curve (EFC) based on PDs,

7) Analyze EFC based on decision maker (DM)’s preferences and determine ,

8) Solve the RAM1 with regard to and obtain a robust decision for implementation.

Location Modeling

Risk Modeling

Decision Making

4) relax the standard constraints of RAM1 and derive RAM2,

DM

DM

Fig. 2 The proposed decision-
making procedure to make robust
decisions for stochastic hub
location problem
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made at the beginning of the period before the occurrence of
stochastic conditions, the problem is formulated as a two-
stage stochastic hub location model (TSSHLM). In the first
stage, location of the hub facilities is decided upon, and in the
second stage, the suitable allocation of non-hub nodes to hub
facilities is determined to meet the demand as shown in Fig. 3.

Considering ξij to present the demand or flow between
origin i and destination j as a random parameter, and ϕ as a
realized certain scenario from a set of all possible scenariosΦ,
then the general form of TSSHLM for p median, which
includes two separate sub-models, first-stage model (FSM)
and second-stage model (SSM), could be written as follows:

TSSPHL:

min
x

F xð Þ þ Eξ Q x; ξ ϕð Þð Þ½ � ð7Þ

where F(x) represents the total setup cost of FSM, Eξ[.]
denotes the mathematical expectation with respect to demand
random vector ξ, and Eξ[Q(x,ξ)] is the recourse function, in
which Q(x,ξ) is the optimal value of SSM.

FSM:

min
x

F xð Þ
X
k¼1

n

f kxk s:t: 3ð Þ and 6ð Þ ð8Þ

SSM:

min
y

X
ϕ∈ϕ

X
i∈N

X
j∈N

ξi j ϕð Þ

X
k∈N

cikyik ϕð Þþα
X
k∈N

X
m∈N

ckmyik ϕð Þyim ξð Þ þ
X
m∈N

c jmy jm

 !

ð9Þ

s:t:
X
k∈N

y jm ϕð Þ ¼ 1; ∀i∈N ;∀ϕ∈Φ ð10Þ

yik ϕð Þ≤xk ; ∀i; k∈N ;∀ϕ∈Φ ð11Þ

yik ϕð Þ∈ 0; 1f g ∀i; k:∈N ;∀ϕ∈Φ ð12Þ

where yik(ϕ) denotes the allocation of non-hub i to hub facility k
for a realized scenario ϕ. The aim of this model is to minimize
the expected value of the total cost. Since the cost function of

the first stage is constant and independent of the stochastic
parameters, it remains unchanged and only the cost function
of the second stage should be derived. The expected value of the
second-stage objective function, Eξ[Q(x,ξ(ϕ))], is as follows:

RP:

min
y

X
ϕ∈Φ

X
i∈N

X
j∈N

p ϕð Þξi j ϕð Þ

X
k∈N

cikyik ϕð Þ þ α
X
k∈N

X
m∈N

ckmyik ϕð Þy jm ξð Þ þ
X
m∈N

c jmy jm ϕð Þ
 !

s:t: 10ð Þ and 12ð Þ:
ð13Þ

where p(ϕ) is the probability of occurring for scenario ϕ.

4.2 Risk modeling

4.2.1 Mean-variance theory

In a risky situation, decision makers (DMs) exhibit three
different behaviors in the forms of risk-seeking, risk-neutral,
and risk-averse that originated from concavity, linearity, and
convexity of their utility function, respectively, as shown in
Fig. 4. It is obvious that a rational DMwould want to choose a
policy with a higher expected value and a lower variance of
positive utilities, such as profit. In other words, it is reasonable
that a DM have a risk-averse behavior to deal with a risky
situation. Therefore, in this study, DM is a normal person who
has a risk-averse behavior and tries to make more robust
decisions with less risk.

The formulation of mean-variance theory is a basic opti-
mization tool to model risk concept with regard to a quadratic
utility function for DM’s preferences. In this situation, a trade-
off between risk and utility function using a risk aversion
coefficient λ is modeled.

U xð Þ ¼ x−λx2 ð14Þ

In the quadratic utility function in Eq. (14), risk-seeking,
risk-neutral, and risk-averse behavior is adjusted based on the

first-stage decisions hubs location second-stage decisions allocation

occurring random demand

( ),

kx ( )iky

Decision: Decision:

Fig. 3 The decision-making process for a two-stage stochastic p-hub
location model

x

U(x)

a risk-seeking DM

a risk-nutral DM

a risk-averse DM

Legend

Fig. 4 The behavior of decision makers based on quadratic utility
function

Int J Adv Manuf Technol (2015) 77:1943–1953 1947



www.manaraa.com

positive, zero, and negative value for risk aversion coefficient
λ, respectively. Therefore, in the stochastic situation in this
problem with random parameter ξ, the cost function f(x,ξ) for
a risk-averse DM can be derived based on the quadratic utility
function (negative utility) as Eq. (15)

U f x; ξð Þð Þ ¼ min μ f x;ξð Þ þ λσ2
f x;ξð Þ

���λ > 0
n o

ð15Þ

where μ and σ2 represent the expected value and variance of
the cost function f(x,ξ), respectively.

4.2.2 Mean-variance risk model

Nowadays, the hubs play an indispensable role in the
communicative environments in both industrial and ser-
vice competitive sectors. It is obvious that the main
concept of the hub location was introduced to make
more economical and convenient decisions in the facil-
ity location area. Due to the fact that the majority of
real location decisions are made in stochastic situations
for a long period of time and changing the contempo-
rary decisions is costly and irrational, it is necessary to
have an especial tool to analyze the problem and make
more robust and tough decisions. The traditional ap-
proach in stochastic hub location problems is to solve
them without considering the range of volatility and the
reliability of obtained solutions, while the nature of this
type of problems is highly indeterminate. On the other
hand, the adopted policy should be able to meet the
system requirements for a long time, since changing the
implemented initial decisions would be very costly. This
clarifies the importance of obtaining solutions with
higher reliability or lower risk in this type of problems.
Actually, it has been proven that in many stochastic
problems, only using the expected value approach can-
not be a reliable decision criterion (see for example
[18]).

These stated facts have motivated the authors to present a
novel approach, considering risk management in the stochas-
tic SAPHMP.

TC ¼ F xð Þ þ Q x; ξð Þ ð16Þ

where

F xð Þ ¼
X
j∈N

f jx j ð16� 1Þ

and

Q x; ξð Þ ¼
X
i∈N

X
j∈N

ξi j
X
k∈N

cikyik þ α
X
k∈N

X
m∈N

ckmyiky jm þ
X
m∈N

c jmy jm

 !
:

ð16� 2Þ

To calculate the expected value and variance (first and
second moment) of the total cost, the basic terms are intro-
duced as Eqs. (17), (18), and (19).

E Q x; ξð Þ½ � ¼
X
ϕ∈Φ

p ϕð ÞQ x; ξ ϕð Þð Þ ð17Þ

E F xÞð Þ½ � ¼ F xð Þ ð18Þ

E Q2 x; ξð Þ� � ¼X
ϕ∈Φ

p ϕð ÞQ2 x; ξ ϕð Þð Þ: ð19Þ

By applying the main concept of the first and second
moment and substituting Eqs. (17) to (19), the expected value
and variance of total cost are derived as Eq. (20) and (21),
respectively.

E TCð Þ ¼ E F xð Þ þ Q x; ξð Þ½ � ¼ F xð Þ þ E Q x; ξð Þ½ �

¼
X
j∈N

f jx j þ
X
ϕ∈Φ

p ϕð ÞQ x; ξ ϕð Þð Þ ð20Þ

Var TCð Þ ¼ E TC−E TC½ �ð Þ2
h i

¼ E F xð Þ þ Q x; ξð Þ−F xð Þ−E Q x; ξð Þ½ �ð Þ2
h i

¼ E Q x; ξð Þ−E Q x; ξð Þ½ �ð Þ2
h i

¼ E Q x; ξð Þð Þ2−2E Q x; ξð Þ½ �Q x; ξð Þ þ E Q x; ξð Þ½ �ð Þ2
h i

¼ E Q x; ξð Þð Þ2
h i

− 2 E Q x; ξð Þ½ �ð Þ2 þ E Q x; ξð Þ½ �ð Þ2 ¼ E Q x; ξð Þð Þ2
h i

− E Q x; ξð Þ½ �ð Þ2

¼
X
ϕ∈Φ

p ϕð ÞQ2 x; ξ ϕð Þð Þ−
X
ϕ∈Φ

p ϕð ÞQ x; ξ ϕð Þð Þ
 !2

ð21Þ
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where E(.) and Var(.) are the expected value and variance
mathematical operators.

Therefore, the quadratic cost utility function based on
mean-variance theory could be written as follows:

MV ¼ E TCð Þ þ λVar TCð Þ; λ > 0 ð22Þ

where λ is the risk aversion coefficient for the mean-variance
(MV) function that takes different values depending on the
DM’s preferences in dealing with risky conditions.

There are two major difficulties in optimizing the MV
model. First, there is heterogeneity between the variance and
the expected value of cost function. Greater values of variance
compared to the average costs will lead to loss of sensitivity of
the model in different scenarios, and it is observed that the
importance of average costs will fade away. In order to reduce
this deficiency, the objective function is normalized as sug-
gested in multi-objective optimization literature. In this ap-
proach, at first, the two functions of E(TC) and Var(TC) are
individually optimized in both minimum and maximum states
and then the risk measure (RM) is defined as the objective
function of risk modeling (RM), which must be minimized as
follows:

RM1:

MinRM ¼ E TCð Þ−E�
min TCð Þ

E�
max TCð Þ−E�

min TCð Þ
� �

þ λ
Var TCð Þ−Var�min TCð Þ

Var�max TCð Þ−Var�min TCð Þ
� �

s:t: 2ð Þ – 6ð Þ:
ð23Þ

The second problem is the mixed integer nonlinear (MINL)
form of the RM1, which should be solved many times for
different risk aversion coefficients, and the computational
complexity makes it impossible to solve large-scale problems
in a reasonable time. To overcome this problem and obtain the
efficient frontier curve, a new procedure is presented as one of
the innovative aspects of this study. The efficient frontier
curve involves the efficient combinations of (λi,μi,σi), which
is also called Pareto solutions. In order to obtain these Pareto
solutions, RM2 could be solved in which the standard con-
straints from integer feasible space (xj,yij∈{0,1}) are relaxed
into continuous feasible space (0≤xj,yij≤1) such as follows:

RM2:

Min RM ¼ E TCð Þ−E�
min TCð Þ

E�
max TCð Þ−E�

min TCð Þ
� �

þ λ
Var TCð Þ−Var�min TCð Þ

Var�max TCð Þ−Var�min TCð Þ
� �

s:t: 2ð Þ– 4ð Þ
ð24Þ

0 ≤xk ≤1; ∀k ∈ N ð25Þ

0 ≤yik ϕð Þ≤1; ∀i; k ∈ N : ð26Þ

This research shows that the standard deviation and ex-
pected value of TC behave in the same way for similar risk
aversion coefficients in the RM1 (mixed integer nonlinear
programming) and RM2 (the relaxed mixed integer nonlinear
programming). In order to verify this claim, a small-scale case
study is provided with four nodes, two hubs, and two stochas-
tic scenarios in both forms for different risk aversion
coefficients.

Figure 5a, b shows the expected value of the TC and its
standard deviation for different aversion coefficient values for
both RM1 and RM2 formats, respectively. As anticipated, the
rising trend for expected value and the falling trend for stan-
dard deviation change in an approximately similar pattern in
both formats.

Figure 6 shows the change ratio of expected value versus
standard deviation in the two formats, which does not dem-
onstrate a significant difference for analyzing the risk and
getting the suitable risk aversion coefficient. As a result, in
real-world problems with larger scale, one can study the RM2
to analyze the risk and find the proper risk aversion coeffi-
cient, which is easier to solve and less complicated.

Therefore, to determine DM’s preferences, it is necessary
to depict the efficient frontier curve of RM2 in a three-
dimensional diagram and ask the DM to assign an acceptable
value for the risk aversion coefficient, considering reasonable
risk and cost levels. For example, efficient frontier curve of
both RM1 and RM2 has been shown in Fig. 6. Furthermore,
the Pareto solutions are represented as Eq. (27).

PD ¼ λ jð Þ;μ jð Þ
TC;σ

jð Þ
TC

� ����min RM2; ∀ j ¼ 1; 2;…; 21; λ ¼ 0; 0:5; 1; 1:5;…; 10f g
n o

ð27Þ

4.2.3 Determining risk aversion coefficient

The most important part of the risk analysis process is decid-
ing about the risk aversion coefficient. Due to the fact that the
p-hubmedian location problem is NP hard [24], solving RM1,
which is a mixed integer nonlinear program, is more difficult,

especially in large-scale problems. To overcome this issue, the
relaxed mixed integer nonlinear programming, called RM2, is
presented to determine risk aversion coefficient. In other
words, based on mean-variance approach, an efficient trade-
off between the expected value and the standard deviation
should be found, which involves the DM’s preferences. The
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risk-averse decision makers like to make decision with lower
expected value and standard deviation of TC. Hence, in the
mean-variance approach, a multi-objective model must be
optimized, in which two heterogeneous objective functions
E(TC) and Var(TC) should be minimized based on weighted
sum method. The weighted sum method is one of the most
popular methods to solve a multi-objective optimization prob-
lem, in which multiple objectives fi(x) are combined into a
single objective F(x), as follows:

min F xð Þ ¼
X
i¼1

n

γi f i xð Þ ð28Þ

where γi is a coefficient related to objective function fi(x). The
scalar concept of “optimality” is not directly valid in the multi-

objective optimization. In this situation, the notion of Pareto
optimality has to be introduced. If S is supposed to be as a set
of constraints of multi-objective problem, then a vector x* ∈ S
is said to be the Pareto optimal for a multi-objective problem if
all other vectors x ∈ S have a higher value for at least one of the
objective functions fi, with i = {1, 2,…, n} or have the same
value for all the objective functions.

Due to the multi-objective optimization nature of mean-
variance model, a Pareto optimal decision must be obtained.
However, there are countless solutions and all of them cannot
be obtained. Thus, a discrete interval from 0 to 10 with a step
of 0.5 is considered for risk aversion coefficient and the
relative solutions for each point are calculated. Based on the
21 Pareto solutions, the efficient frontier curve is formed using
a scatter plot of these points and by fitting a quadratic curve, in
which all the possible Pareto optimal decisions will be esti-
mated. This curve includes all the different preferences of the
DMs. In other words, there will be a risk aversion coefficient
for every preference of the decision maker (μ,σ) and each
risk-averse coefficient corresponds to a certain preference and
then the efficient frontier curve consists of all the risk-averse
DMs’ preferences. The value of risk aversion coefficient is
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Table 1 The information of the case study with ten nodes and five
likely scenarios for demand

Nodes (N) Hubs
(p)

Scenarios
(Φ)

Probability of
scenarios (p(ϕ))

Discount
factor (α)

Shiraz, Tehran p=3 Very low 0.11 0.6
Kerman, Semnan Low 0.22

Kermanshah, Tabriz Middle 0.33

Borujerd, Mashhad High 0.22

Kashan, Arak Very high 0.12
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chosen based on the DM’s preferences and his/her risk atti-
tude, and it may be different for each DM. Therefore, DMs
should be able to select a risk aversion coefficient on the
efficient frontier curve based on their preference to obtain a
reliable decision for implementation.

5 A case study

In order to implement the systematic approach and illustrate the
proposed procedures, a network of automobile part distribution
and transportation system is considered. A nationwide corpo-
ration in Iran has decided to establish a new system of distri-
bution of automobile parts among several subsidiaries around
the country. For this, a stochastic location-allocation hub prob-
lem is considered. Due to the strategic and long-term nature of
decisions, the reliability of the policy is critical for the corpo-
ration so it is necessary to consider a risk-based approach.

It is required to establish three hub centers among the cities
where subcontracts are located and a policy for transshipments
between cities in order to realize future demands. Based on
historical data and consultation with experts, five levels of
demands are separated as future scenarios. The basic data for
the problem is mentioned in Table 1.

The problem is implemented in General Algebraic Model-
ing System (GAMS) modeling environment using the
GAMS/CONOPT and GAMS/DICOPT solvers for RM2 and
RM1 models, respectively. All tests were executed on a per-
sonal computer equipped with a 4.2-GHz Intel Pentium 4
CPU and a 2-GB RAM, based on Windows platform.

In order to obtain the Pareto solutions and depict the
efficient frontier curve, the RM2 was solved with 21 different
risk aversion coefficients of λ={0, 0.5, 1,…, 10}. The rel-
evant frontier curve is shown in Fig. 7a, b. As expected,
increasing a risk-averse level of the DM leads to an increase
in the expected value of total cost and a decrease in the
standard deviation. Furthermore, it is obvious that there are
unique decisions for each level of risk aversion coefficient.

In this case study, two representatives are nominated to
discuss the issue, DM1 and DM2. DM1, the representative of
the chief executive officer, has a preference of λDM1=2.5,
while DM2, the representative of the subcontractors, tends to
accept lower risk levels and makes the decisions which rep-
resent a risk aversion coefficient of λDM2=5. In other words,
the DMs select their risk aversion coefficients based on their
preferences for the expected value and standard deviation of
total cost from the frontier curve.

The proposed approach is expected to show different re-
sults based on different attitudes of the DMs. In order to obtain

Table 2 The location-allocation
results of the case study according
to DMs’ preferences

Decision maker λDM 3-hub Allocation μTC σTC

DM1 2.5 Tehran Tabriz, Kermanshah 15,461.08 4613.19
Kerman Semnan, Shiraz, Mashhad

Kashan Arak, Borujerd

DM2 5 Tehran Tabriz, Semnan 15,753.98 4547.83
Kerman Kashan, Shiraz, Mashhad

Kermanshah Arak, Borujerd
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Fig. 7 Two-dimensional (a) and three-dimensional (b) demonstration of Pareto solutions and the efficient frontier curve for different DMs’ preferences
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DMs’ policies, the RM1 optimization is run with regard to the
two risk aversion coefficients, separately. As shown in Table 2,
the two robust optimal policies consisting of location of hubs,
allocation of non-hubs to hubs, and the expected value and
standard deviation of the total cost are derived.

Based on the information in Table 2 and the location
of each subcontractor on Iran’s map, the robust optimal
network configuration for this distribution system is
depicted for DM1 and DM2’s preferences in Figs. 8
and 9, respectively.

Fig. 9 Optimal hub location and
allocation policy for DM2

Fig. 8 Optimal hub location and
allocation policy for DM1
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6 Conclusion and future research directions

A critical concern of today’s risk-averse decision makers is
managing the uncertain conditions, considering reliability of
decisions. In hub location-allocation problems, there has been
no significant attempt to study the problem in this situation;
even stochastic models of this problem without considering
risk are quiet rare in the literature. This issue led the authors to
develop a systematic risk management approach to make
robust decisions according to DMs’ preferences for a
location-allocation p-hub median problem for the first time.
This approach, built on mean-variance theory and two-stage
stochastic programming concepts, is comprised of three main
phases, namely location modeling, risk modeling, and deci-
sion making, each of which phase has several steps. The first
phase explains how to develop a proper two-stage stochastic
model, based on the related deterministic model. In the second
phase, DM’s utility function is derived based on total cost
function in the form of mean-variance. One of the main
problems associated with this measure is heterogeneity be-
tween the variance and the expected value of costs in the
objective function. In order to eliminate the effect of this
heterogeneity, a normalization method was suggested, which
is of huge assistance in getting reasonable results. Then, an
innovative procedure was proposed in order to enhance the
calculation efficiency especially for large-scale cases.
Obtaining Pareto solutions, depicting frontier curve, determin-
ing the DM’s risk aversion coefficient, and obtaining the
robust policy through optimization based on the DM’s prefer-
ence are conducted in the third phase. Finally, a practical case
study of a distribution system of automobile parts in Iran
demonstrated the effectiveness of the proposed approach.

The authors hope that this paper could be a proper com-
mencement for including other risk measures such as VAR
and CVAR in other location problems. This work may be
extended in several directions. From a modeling perspective,
newer hub location problems such as multiple allocation p-
hub median problem, p-hub center problem, and emergency
facility location can be studied. Also from the risk manage-
ment viewpoint, there is a very broad area for future research.
Various risk measures with different advantages and disad-
vantages have been introduced in the literature of financial
management, which can now be studied in the field of hub
location problems. Finally, about the solution methods, since
the problem is NP hard on its own and real-world risk prob-
lems need to be solved in greater dimensions, the development
of exact or effective heuristic or meta-heuristic methods seems
to be necessary for the future cases.
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